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Abstract 

The known structures of Na7Zr6F31 , KY3Flo and 
tveitite (Ca14Y5F43) have been modelled with clusters 
of six octahedrally arranged, cation-centred, Archi- 
median square antiprisms which share corners to 
generate a cuboctahedral cavity at the centre. This 
cluster, M6X36, has point symmetry m3m. The anion 
coordinates calculated from these polyhedral models 
are compared with observed values derived from X- 
ray data. Overall the polyhedral models are 
considered to be good approximations to the real 
structures. 

Introduction 
A160nard, Le Fur, Pontonnier, Gorius & Roux (1978) 
first discussed the so-called fluorite-related structures 
of certain mixed alkali and rare-earth fluorides as a 
group. They defined 'fluorite-related' rather generally 
to mean the existence in a structure of layers of 
close-packed cations stacked one upon the other in 
no particular sequence: in fluorite itself, of course, 
the stacking sequence is ABC. It was clear from their 
work that a fundamental step in going from the 
fluorite structure to many superstructures was the 
conversion of MX8 cubes to square antiprisms, six 
of which then shared edges to enclose an X8 cube, 
just as six MX8 cubes do in fluorite itself; both types 
of isolated cluster have contents M6X32. 

* To whom all correspondence should be addressed. 

0108-7681/86/010055-04501.50 

Bevan, Greis & Str~ihle (1980) proposed another 
structural principle for strictly fluorite-related super- 
structures (in the sense that the close-packed layer 
stacking sequence is always ABC) in which six MXs 
square antiprisms share corners to generate an 
enclosed X12 cuboctahedron, giving rise to a cluster 
M6X36 (or M6X37 if an additional anion occupies the 
cavity within the cuboctahedron). Their paper con- 
tains photographs of polyhedral models of two known 
structures, Na7Zr6F31 (Burns, Ellison & Levy, 1968) 
and tveitite, Ca14YsF43 (Bevan, Strfihle & Greis, 1982). 
We were interested to determine just how well such 
models describe the actual structures, and to this end 
we have calculated anion coordinates from the 
models for comparison with those obtained experi- 
mentally. Only three structures are discussed here, 
NavZrrF31, tveitite and KYaFlo (Pierce & Hong, 1973), 
but the method is generally applicable. 

Na7ZrrF31 

This compound is rhombohedral, space group R3, 
with hexagonal unit-cell dimensions a = 14.1561 (7), 
c =9.579 (7)~ .  The relationship of this cell to that 
of the fluorite structure is given by (a) ( 00 10 

b h = - 0 . 5 0  2.00 -1.50 / b F . (1) 

C h 1.00 1.00 1.00/ C~: 

Zr6F37 clusters are centred on lattice points, and each 
ZrF8 square antiprism in a cluster shares one edge 
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56 CUBOCTAHEDRAL ANION CLUSTERS 

Table 1. Calculated coordinates o f  the eight vertices o f  a square antiprism 

Coordinates  in terms of  
polyhedral  edge a 

Coordinates  in terms of  
cubic unit  cell C 

Coordina tes  in terms of  
cubic unit cell F 

Vertex x y z x y z x y z 

1 1.548a 0.500a 0.500a 1.000 0.323 0-323 0.774 0.250 0.250 
2 0.707a 0.707a 0.000a 0.457 0-457 0.000 0.354 0.354 0-000 
3 1.548a 0.500a -0.500a 1.000 0.323 -0-323 0-774 0.250 -0.250 
4 0.707a 0.000a -0.707a 0.457 0.000 -0-457 0.354 0.000 -0.354 
5 1.548a -0.500a -0.500a 1.000 "0.323 -0.323 0.774 -0.250 -0.250 
6 0.707a -0.707a 0-000a 0.457 -0.457 0.000 0.354 -0.354 0,000 
7 1.548a -0.500a 0.500a 1.000 -0.323 0.323 0.774 -0.250 0-250 
8 0.707a 0-000a 0.707a 0.457 0.000 0.457 0.354 0-000 0.354 

with a square antiprism of an adjacent cluster [see 
Fig. 4 of Bevan et al. (1980)]. All the anions of the 
structure are generated by this arrangement of 
clusters. 

KY3Flo 

This compound is cubic, space group Fm3m, with 
a = 11.536 ( 4 ) ~ :  its unit cell is a 2 x 2 x 2  supercell 
of fluorite. Y6F36 clusters are centred on ½, ½, ½ etc., 
and each YF8 square antiprism of a cluster shares all 
four edges of its outer square face with like edges 
from adjacent clusters. Again, all the anions of the 
structure are generated by this cluster array. 

Models of both these structures have the correct 
symmetry. 

C a 1 4 Y s F 4 3 ,  tveitite 

This is another rhombohedral compound, space 
group R3, with hexagonal unit-cell dimensions a = 
16.6920 (9), c = 9.6664 (8) A,. The unit-cell relation- 
ship between tveitite and fluorite is given by 00 l 0)(a) 

bh =/--1"50 2.50 -1.00 bF . (2) 

C h \ 1"00 1"00 1"00 CF 

(CaYs)F37 clusters are centred on lattice points, the 
two types of cation being randomly distributed over 
the six square-antiprism centres. These clusters in the 
tveitite structure are not, however, linked directly by 
edge sharing [see Fig. 3 of Bevan et al. (1980)], but 
are connected through pairs of edge-sharing F8 cubes, 
each of which is joined by face sharing to square 
antiprisms of two separate clusters. With discrete 
clusters the cluster anions themselves do not con- 
stitute all the anions of the structure, and one of the 
seven 18(f) anion sites in this structure stems from 
the linking cubes. It transpires that this model does 
not quite have R3 symmetry, although it is very close. 

Calculation of coordinates of polyhedral vertices 
in models 

Fig. 1 depicts a cluster, viewed along a threefold axis, 
of six ideal square antiprisms with edge a sharing 
comers to enclose an undistorted cuboctahedron. The 

point symmetry of such a cluster is m3m. We choose 
an origin at the centre of the cuboctahedron and 
construct an orthogonal axial set as shown. These 
axes are also those of the fluorite structure. Table 1 
lists for completeness the calculated coordinates of 
all eight vertices of one square antiprism (see Fig. 1) 
and we therefore have from symmetry considerations 
the coordinates of all cluster vertices. Table 1 also 
gives fractional coordinates in terms of two cells, one 
designated C, with unit vectors equal to 1.548a (this 
is the vector from the origin to the centre of an outer 
square face of a square antiprism), and another, desig- 
nated F, with unit vectors equal to 2a, corresponding 
to the fluorite unit cell of edge-sharing cubes of edge a. 

We now proceed to calculate coordinates of cluster 
vertices in terms of the supercells. Use of the formal 
relationship between supercell and subcell assumes 
no distortion from the cubic metric of the latter (and 
therefore takes no account of any discrepancy in size 
between the square-antiprism cluster and the 
analogous cube cluster, M6X32): this leads to certain 
conflicting results in the cases of Na7Zr6F31 and 
KY3F~o. In particular, some non-identical vertices 
which are crystallographically equivalent by virtue of 
edge-sharing between clusters do not calculate as 
such. For tveitite, where the clusters are discrete, this 
problem does not arise; however, not all anion coor- 
dinates can be calculated. 

c b 

5 

o 

Fig. 1. A schematic  drawing of  the M6F37 cluster, showing the 
or thogonal  axes: the labelled vertices represent those used in 
the calculations. 
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Table 2. Calculated and experimental coordinates for 
Na7ZrrF31 

Experimental Calculated coordinates 
coordinates* (from model) 

Vertex x y z x y z 
F(1) 3,5 0.3558 0.1114 0.0917 0.3589 0.1047 0.0872 
F(2) 1 0.1835 0.0554 0.3944 0.1837 0.0536 0.4052 
F(3) 7 0.2735 0.3706 0.4243 0.2627 0.3613 0.4205 
F(4) 4,6 0.2088 0.1585 0.0017 0-2118 0-1601 0.0000 
F(5) 2,8 0.2432 0.5417 0.4416 0.2455 0.5428 0.4418 
F(6) - -  0.0000 0.0000 0.0526 0.0000 0.0000 0.0000 

* From Bums, Ellison & Levy (1968). 

An alternative procedure is to work directly from 
the model. The calculations are then entirely self- 
consistent provided that the clusters share edges 
directly in some way so as to form a three-dimensional 
network. 

The supercell parameters with respect to the cubic 
unit cell C (see Table 1) are determined by tracing 
paths from the origin to other appropriate lattice 
points. As a first stage we determine the coordinates 
of these lattice points in terms of the polyhedral edge 
a, from which we can write (for Na7Zr6F31) 

a h--- (4.096a, -3.0963, - 1 . 0 0 0 a ) - ( 0 ,  0, 0) 

bh = ( - 1 . 0 0 0 a ,  4"096a, -3"0963)- - (0 ,0 ,0) .  (3) 

Ch = (2.096a, 2.096a, 2 .0963)-  (0, 0, 0) 

Comparison of the half values of these coordinates 
with the elements of the 3 x 3 matrix in equation (1) 
immediately reveals the small discrepancy in size 

Table 3. Calculated and experimental coordinates for 
KY3F1o 

Experimental Calculated coordinates 
coordinates* (from model) 

Vertex x y z x y z 
F(1) 2,4,6,  8 0-000 0.1647 0.1647 0.000 0.1726 0.1726 
F(2) 1,3, 5,7 0.6081 0.6081 0.6081 0.6221 0-6221 0.6221 

* From Pierce & Hong (1973), but with their origin shifted by ~, I, ~ to 
conform with ours. 

between the square-antiprism (M6X36) and cube 
(M6X32) clusters. 

The relationship between the supercell and the 
cubic cell C is now written as 

(ah) [ 2"6460, - - 2 " 0 0 0 0 - 0 . 6 4 6 0 ~ ( a c ) ,  

bh =[--0"6460 2.6460 --2.0000] bc . (4) 

Ch \ 1"3540 1"3540 1"3540] Cc 

We then proceed conventionally to calculate coordi- 
nates of the cluster vertices for the hexagonal cell. 
These coordinates are listed in Table 2, together with 
the experimental coordinates for comparison. Table 
3 contains the data for KY3F10, obtained in the same 
way. 

For tveitite the M6X37 clusters are discrete, and the 
model [see Fig. 3 of Bevan et al. (1980)] makes use 
of empty cubes to achieve connectivity. The primary 
MrX37 cluster is expanded by the addition of six such 
cubes, one for each square antiprism and joined to 
it by face sharing: these larger clusters share edges 
to fill space. Calculations such as the above based on 
this model now lead to some minor discrepancies, as 

Table 4. Calculated and experimental coordinates for tveitite (Ca14YsF43) 

Calculated coordinates 
From formal subcell/ 

Experimental coordinates* supercell relationship From model 
Vertex x y z x y z x y z 

F(1) 4,6 0.1958 0.0831 0.0040 0.1861 0.0744 0.0000 0.1827 0.0734 0-0000 
F(2) 2,8 0.1102 0.0975 0.2349 0.0993 0.0868 0.2357 0.0973 0.0853 0.2357 
F(3) 1 0.0190 0.1495 0.4146 0.0184 0.1471 0.4246 0.0178 0.1444 0.4247 
F(4) 3 0.2702 0.1024 0.2573 0.2690 0-1044 0.2580 0.2642 0.1030 0-2580 
F(5) 7 / 0.1576 0.2686 0.2515 0,1587 0.2698 0.2580 0.1554 0.2650 0.2580 

t D S  0.1610 0-2640 0.2420 
F(6) 5 ~  0.0324 0.2842 0.0971 0.0359 0.2874 0.0913 0.0346 0.2818 0.0913 tB! 0.0344 0.2818 0.0914 
F(7) t A ~  0.2955 0.3838 0.0744 - -  - -  - -  0.2986 0.3847 0.0754 

t C  J 0.2987 0.3848 0.0753 
F(8) - -  0.0000 0-0000 0.0600 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

* From Bevan, Str~ihle & Greis (1982). 
t Vertices A, B, C and D refer to the other four comers of  an empty cube sharing the face (1, 3, 5, 7) of  a cluster square antiprism (see text). 

Table 5. Cation coordinates for Na7Zr6F31 

C a l c u l a t e d  fo r  equ iva l en t  
superce l l  o f  ideal  C a l c u l a t e d  f r o m  

Observed fluorite polyhedral model 
Na(1) 0.0792, 0.3040, 0.4926 0-0769, 0.3077, 0-5000 - -  - -  

1 Na(2) 0, 0, ~ 0, 0, ~ 0, 0, 
Zr 0.1896, 0.0515, 0.1790 0.1795, 0.0513, 0.1667 0.1976, 0-0576, 

-7 
0.1793 
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shown in Table 4, which arise from the fact that the 
model does not quite have R3 symmetry. 

So far we have considered only the anions of the 
structure, because it is these which are displaced 
significantly from ideal fluorite sites. The cations 
suffer only minor displacements from the ideal f.c.c. 
positions. However, only those cation sites in the 
models which can, to a good approximation, be 
centred within regular polyhedra (e.g. square anti- 
prisms, cubes) can be calculated. Thus, for example, 
the coordinates of the 18(f) Zr site in Na7Zr6F31 are 
calculable, but not for the 18(f) Na(1) site. Compara- 
tive data for Na7Zr6F31 are shown in Table 5. 

Overall, then, for the three structures discussed, 
the calculations are in good agreement with observa- 
tions, and we consider the polyhedral models to be 
good approximations to the real structures. In a sub- 
sequent paper we shall show how such calculations 
on a polyhedral model of a postulated structure have 

been used, with X-ray powder data, as the starting 
point of a successful refinement. 

We thank Dr H. J. Rossell and Professor B. 
Abrahamson for much helpful discussion. 

We also acknowledge the provision of financial 
assistance by the Australian Research Grants Scheme. 
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Abstract 

Textures in natural pyrolusite have been studied by 
1 MV high-resolution transmission electron micros- 
copy (HRTEM). The structure is mainly of the rutile 
type with many lamellae of a different structure. Most 
of the lamellae, being parallel to each other, are 
perpendicular to one of the tetragonal a axes of the 
pyrolusite and are separated by about 9 nm. Their 
structure was inferred to be similar to that of ramsdel- 
lite. There are many holes located along the lamellae. 
The cross section of some holes is rhombic and their 
edges are almost parallel to (110); they vary in size 
from ten to several hundred nm 2. The holes must be 
produced in the process of the phase transformation 
of manganite into pyrolusite. 

Introduction 

The structure unit in manganese oxides and 
hydroxide oxides is an MnO6 octahedron, which 
shares opposite edges with adjoining octahedra to 
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form an infinite chain. The period of the chain is 
0.28 nm. Double or triple chains are formed when 
two or three parallel chains are combined with each 
other by sharing edges of the constituent octahedra. 
Many varieties of framework structures have so far 
been found for manganese oxides which are built of 
single or multiple chains by sharing their comers 
(Wells, 1975). 

There are three reasons why the study of the phase 
and structure relation among these compounds is 
difficult: (i) many polymorphs with differen't combi- 
nations of chains have been found in these com- 
pounds, but the stability relation among them is still 
not clear; (ii) various kinds of cations can be easily 
accommodated in the interstices of the framework 
and give a complex formula; in this case some of the 
Mn 4÷ in the framework are replaced by Mn 3÷ or other 
cations with smaller charges; and (iii) many of these 
compounds are often found or synthesized as brittle, 
poorly crystallized materials. (iii) is the principal 
reason why these materials have not yet been fully 
characterized crystallographically. Consequently, 
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